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‡ Università di Roma ‘La Sapienza’, Piazzale A Moro 2, 00185 Roma, Italy

Received 5 May 2000

Abstract. In this paper, we discuss theoretically the behaviour of the four-point non-linear
susceptibility and its associated correlation length for supercooled liquids close to the mode-
coupling instability temperature Tc . We work in the theoretical framework of the glass transition as
described by mean-field theory of disordered systems, and the hypernetted-chain approximation.
Our results give an interpretation framework for recent numerical findings on heterogeneities in
supercooled liquid dynamics.

1. Introduction

Recently, a lot of attention has been devoted to understanding the nature of dynamical
heterogeneities in supercooled liquids [1–7]. Many numerical experiments have found long-
lived dynamical structures which are characterized by a typical length and a typical relaxation
time which depend on the values of the external parameters (temperature and density). A way
to quantify these dynamical heterogeneities is in terms of the four-point density function, and
its associated non-linear susceptibility, which show power-law behaviour as one approaches
the mode-coupling temperature Tc from above. In this paper we review the details of the
theoretical calculations of this function put forward in [8–10] and discuss some new results.

At the glass transition one observes freezing of density fluctuations. The function

g2(x) = 〈(ρ(x + y) − ρ)(ρ(y) − ρ)〉 (1)

is often regarded as the Edwards–Anderson order parameter signalling the onset of glassiness.
It is therefore quite natural to try to interpret the dynamical heterogeneities and the correlation
length in terms of fluctuations of the order parameter, and study the four-point function

g4(x) = 〈[(ρ(x + y) − ρ)(ρ(y) − ρ)]2〉 − 〈(ρ(x + y) − ρ)(ρ(y) − ρ)〉2 (2)

and its related non-linear susceptibility χ4 = ∫
dx g4(x). To our knowledge the first proposal

to study the four-point function to identify a growing correlation length in structural glasses
was in [11] in the context of a numerical study of a Lennard-Jones liquid. There, no sign of
growing correlation was found, probably because of the insufficient thermalization. However,
more accurate measurements [4, 5, 9, 12] show that there is a dynamical correlation length
which grows as Tc is approached.

Here we would like to investigate theoretically the behaviour of this function in the context
of the picture of the glass transition that comes out from the study of disordered mean-field
models [13], and from some approximation scheme for molecular liquids [14].

In mean-field disordered systems one finds that, on decreasing the temperature from
the liquid phase, two different transitions appear: a dynamical transition at a temperature
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Tc, and a static (Kauzmann-like) transition at a lower temperature TK . At the dynamical
transition Tc, identified with the mode-coupling theory [15] transition temperature, equilibrium
density fluctuations freeze and ergodicity breaks down. Below that temperature, the Boltzmann
distribution is decomposed into an exponentially large number of ergodic components eN�(T ).
�(T ), the logarithm of the number of these components, is the configurational entropy, which
decreases with decreasing temperature, and the ‘static’ transition signals the point where
�(TK) = 0. Dynamically, a non-zero Edwards–Anderson order parameter signals freezing.

As has been remarked many times, this theory misses the existence of local activated
processes which restore ergodicity below Tc. These can be included phenomenologically to
complete the picture. We will suppose that the ergodic components which the ideal theory
predicts below Tc become in real systems metastable states (or quasistates), capable of con-
fining the system for some large, but finite times on given portions of the configuration space.
The inclusion of activated processes, although done by hand, has far-reaching consequences.

The foundation of the notion of quasistates is based on the timescale separation (as can
be seen in the shape of the structure function), which allows one to consider ‘fast’ degrees of
freedom quasi-equilibrated, before the ‘slow’ degrees of freedom can move. So, this notion
applies below as well as above Tc, where the two-step relaxation is predicted even by the
ideal theory. This point has been recently stressed in [16] in a different context. Both above
and below Tc, we can talk of quasistates in which the system equilibrates almost completely
before relaxing further. The typical lifetime of the quasistate will be of the order of the alpha
relaxation time τα .

Our basic observation is that within the theoretical framework described, the quasistates
correspond to highly correlated regions of the configuration space; typical configurations
belonging to the same quasistate would appear to be highly correlated. On the other hand,
configurations belonging to distant quasistates, such as the ones which correspond to large
time separation t � τα , show typically low correlations.

We argue, then, that the dynamical correlation length and susceptibility observed in
the simulations referred to above can be estimated by the corresponding quantities within
a quasistate. On the other hand, the long-time limits of the same quantities, i.e. the values
reached for times much larger than the lifetime of the quasistates, correspond to maximally
distant quasistates. This predicts maximal fluctuations and heterogeneity on a timescale of the
order of τα .

2. How to compute quasistate averages: ‘recipes for metastable states’

In this section, we address the question of how to compute correlation functions within single
quasistates, reviewing some ‘recipes’ that were put forward in [17, 18]. Let us consider the
case of mean-field spin-glass models below Tc, where there is true ergodicity breaking and the
quasistates are true ergodic components. Suppose the temperature to be above TK so that the
configurational entropy �(T ) > 0. Given any local observable A(x), its Boltzmann average
can be decomposed as

〈A(x)〉Boltzmann =
∑
α

wα〈A(x)〉α (3)

where the indexα runs over all the eN� states; the weights of the different stateswα would all be
of the same order, wα ≈ exp(−N�(T )). In the following we will be interested in computing
space averages (correlation functions) among local observables,

∫
dx 〈A(x)〉〈B(x + y)〉. If by

〈·〉 we mean a Boltzmann average, we can expand each of the two averages according to (3)
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and find that ∫
dx 〈A(x)〉〈B(x + y)〉 =

∫
dx

∑
α,β

wαwβ〈A(x)〉α〈B(x + y)〉β (4)

which, due to the fact that the number of ergodic components is exponentially large, is
dominated by the terms in the double sum with α �= β.

Our major interest will be in computing instead averages of the kind∫
dx

∑
α

wα〈A(x)〉α〈B(x + y)〉α

i.e. correlation functions in a particular ergodic component. To this end, we can use
a conditional Boltzmann prescription [17, 18], where one fixes a reference configuration
Y = {y1, . . . , yN }, and only the configurations X = {x1, . . . , xN } that are similar enough
to the reference configuration are given a non-vanishing weight.

Let us consider as a measure of similarity among two configurations X and Y the following
function, which we call the overlap:

q(X, Y ) =
∫

dx dy (ρX(x) − ρ)(ρY (y) − ρ)w(|x − y|) (5)

where:

• ρZ(z) (Z = X, Y ) is the microscopic density corresponding to the configuration Z:
ρZ(z) = ∑

i δ(zi − z);
• the function w(r) is a short-range sigmoid (or step) function such that if r0 denotes the

typical radius of the particles, w(r) is close to 1 for r � ar0 and close to zero otherwise.
The value of a = 0.3 gives a measure of overlap that is not too sensitive to small atomic
displacements.

Notice that, with this definition, q(X, Y ) is maximal if X = Y , while it is equal to zero if X

and Y are uncorrelated. Notice also that one can write q(X, Y ) = ∑
i,j w(|xi − yj |), a form

which is manifestly invariant under permutations of the particles.
Suppose now that we fix a reference configuration Y , chosen with Boltzmann probability

at temperature T , and consider the conditional probability

Pq(X|Y ) = e−βH(X)δ(q(X, Y ) − q)

Zq(Y )
(6)

where the constrained partition function is

Zq(Y ) =
∫

dX e−βH(X)δ(q(X, Y ) − q). (7)

As Y is by hypothesis an equilibrium configuration, it will belong to some quasistate α, so, if
we choose q as the typical overlap among configurations in this quasistate (with probability
one, almost all configurations have the same overlap), i.e. the Edwards–Anderson parameter
of the state qEA, we will be able to compute the quasistate averages: given two observables
A(X) and B(X) we can write

∑
α

wα〈A〉α〈B〉α =
∫

dY
eβH(Y )

Z
A(Y )

∫
dX

e−βH(X)δ(q(X, Y ) − q)

Zq(Y )
B(X). (8)

Notice that if, on the other hand, in (6) we were to choose q as the typical overlap among
different quasistates, the constraint would be completely irrelevant and we could get the
Boltzmann average (4).
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Notice that the overlap that we consider is a masked integral of the density–density
correlation function among the two configurations X and Y . We are interested in studying the
fluctuation of this quantity, which is the following integral of the four-point function:

χ4 = β(〈q〉2 − 〈q〉2
) =

∫
dx dy dz dr w(x − y)w(z − r)

× ( 〈(ρX(x) − ρ)(ρY (y) − ρ)〉〈(ρY (z) − ρ)(ρZ(r) − ρ)〉
−〈(ρX(x) − ρ)(ρY (y) − ρ)〉 〈(ρX(z) − ρ)(ρY (r) − ρ)〉 )

(9)

where we have denoted with the angular brackets the conditional average with the distribution
(6), and with the bar the average over the canonical distribution of the reference configurationY .

Within this formalism, the generating functional of the correlation functions is the
constrained free energy

V (q) = −(β/N)

∫
dY

eβH(Y )

Z
log(Zq(Y )). (10)

This function has been computed in various models having a glass transition, including
mean-field disordered models and simple liquids in the HNC approximation, all giving
consistent results [17,18]. The shape of V as a function of q allows one to distinguish between
the liquid and glass phase. We show the potential in figure 1 for hard spheres in the HNC
approximation.
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Figure 1. The potential for HNC hard spheres at several densities. We show the high- and low-
q regions of the potential. The lines joining them are just guides for the eyes. Lower curves
correspond to higher densities. At low density the potential is convex. The appearance of a
secondary minimum signals the breaking of ergodicity, with exponentially many states.
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In the liquid phase at high temperature, the potential is convex with a unique minimum
for q = 0 which corresponds to the typical overlap among random liquid configurations.
Lowering the temperature, the potential loses convexity, until, when Tc is reached, it develops
a secondary minimum, at a high value of q. The height of the secondary minimum with
respect to the first one is related to the configurational entropy by Vsec − Vpri = T�(T ),
which vanishes at TK .

A remarkable fact that has often been discussed [17] is that while the properties of the
low-q minimum reflect the properties of the full Boltzmann average, the properties of the
high-q minimum reflect the properties of averages in a single ergodic component.

In the shape of the potential, the MC transition appears as a spinodal point, and as such it
has a divergent susceptibility. In fact, general relations in the effective-potential theory imply
that the susceptibility is given just by the inverse curvature of the potential in the minimum,
i.e. χ4 = 1/V ′′(q)|secondary minimum. This quantity diverges for T → Tc, which, in turn, implies
the divergence of the spatial range of the correlations. Generically, in all the models studied,
the slope of the inflection point vanishes linearly for T → Tc, implying χ4(T ) � |T − Tc|−γ

with a mean-field exponent γ = 1/2. We notice that χ4 computed at the primary minimum
represents the Boltzmann average of the order parameter fluctuations and is completely regular
at Tc.

In figure 2 we see the susceptibility computed by this procedure (circles), which shows a
divergence at Tc.
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Figure 2. The susceptibility of the metastable states for the p-spin model with p = 3. Here
Tc = 0.612. The low-temperature data come from the potential theory. The high-temperature data
come from the dynamical equations.

3. A dynamical approach

The idea of considering a system coupled with a reference configuration can also be used
in dynamics to compute the time-dependent susceptibility. In this context it is convenient



6340 S Franz and G Parisi

to couple with the initial configuration X0. Consider a system at equilibrium at time zero
with respect to the Hamiltonian H(X) which evolves for positive times with the modified
Hamiltonian

Htot (X) = H(X) − εq(X,X0). (11)

For small ε, linear response theory at equilibrium implies that

χ4(t) = β
(〈q(Xt ,X0)

2〉 − 〈q(Xt ,X0)q(X0, X0)〉
) = ∂〈q(Xt ,X0)〉

∂ε
. (12)

The problem of studying the evolution of a system with Hamiltonian (11) can in principle
be addressed within any dynamical approximation scheme (e.g. MCT).

However, for the time being we have only addressed the problem in the context of the
p-spin model, which, for all present purposes, should capture the essential features of the
function χ4(t). Clearly, as the model is completely lacking in any spatial structure, in order
to infer from the behaviour of χ4 something about a correlation length we need to resort to
equation (9).

The p-spin model [19] describes N interacting variables S1, . . . , SN (spins) on the sphere∑
i S

2
i = N , with Hamiltonian H = ∑

i1<···<ip
Ji1···ipSi1 · · · Sip where the couplings are

random independent Gaussian variables with zero mean and variance J 2 = p!/(2Np−1).
The appropriate measure of overlap for this system is q(S, S ′) = (1/N)

∑
i SiS

′
i . For this

model it is customary to consider Langevin dynamics, which in our case will be implemented
using the Hamiltonian Htot (S) = H(S) − εq(S, S0), where S0 = S(t = 0) is an equilibrium
initial condition. We have

dSi(t)

dt
= −∂H(S(t))

∂Si

+ εSi(0) + ηi(t) (13)

where ηi(t) is a white noise with amplitude 2T and µ(t) is a Lagrange multiplier which ensures
that the spherical constraint is obeyed at all times.

Using standard manipulations based on the Martin–Siggia–Rose functional integral, one
can write a self-consistent equation for a single spin which, using the notation f (q) = 1/2qp,
reads

dS(t)

dt
= −µ(t)S(t) +

∫ t

0
ds f ′′(C(t, s))R(t, s)S(s) + βf ′(C(t, 0))S(0) + εS(0) + ξi(t)

(14)

where ξ(t) is a coloured Gaussian noise with variance

〈ξ(t)ξ(s)〉 = f ′(C(t, s)) + 2T δ(t − s) (15)

where C and R are the correlation and response functions of the system, to be determined
self-consistently from C(t, s) = 〈S(t)S(s)〉, R(t, s) = 〈δS(t)/δξ(s)〉. The detailed derivation
of (14) is rather standard (see e.g. [20]) and we do not reproduce it here.

From (14), taking the correlations with S(s) and ξ(s) one can derive equations for C and
R, which read, for t > s,

∂C(t, s)

∂s
= −µ(t)C(t, s) +

∫ t

0
du f ′′(C(t, u))R(t, u)C(u, s)

+
∫ s

0
du f ′(C(t, u))R(s, u) + βf ′(C(t, 0))C(s, 0) + εC(s, 0)

∂R(t, s)

∂s
= −µ(t)R(t, s) +

∫ t

s

du f ′′(C(t, u))R(t, u)R(u, s).

(16)
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Together with the equation specifying the time dependence of µ(t):

µ(t) =
∫ t

0
du f ′′(C(t, u))R(t, u)C(u, t)

+
∫ t

0
du f ′(C(t, u))R(t, u) + βf ′(C(t, 0))C(t, 0) + εC(t, 0) + T (17)

equations (16), (17) form a complete set, which can be solved numerically to derive the value
of χ4(t) as

χ4(t) = dC(t, 0)/dε. (18)

With a simple step-by-step integration [21] we could reach times of the order of 1000. This
allowed us, in the case where p = 3, to compute the function χ4(t) down to temperature
T = 0.7, compared with a critical temperature Td = 0.612. More sophisticated algorithms
(see the contribution of Latz to this Special Issue) will allow one in the near future to approach
the critical temperature much more closely. Our results for the function χ4(t) are displayed in
figure 3 for various temperatures. We see that χ has a maximum which becomes higher and
higher as the temperature is lowered, and is pushed towards larger and larger times. This is
the behaviour that is seen qualitatively in the numerical simulations [9, 12].
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Figure 3. The dynamical susceptibility for the p-spin model (p = 3) as a function of time for
several temperatures; the lower the maximum, the higher the temperature. From bottom to top,
T = 1.0, 0.9, 0.8, 0.7.

As shown in reference [9], we define t∗ as the time at which χ∗ is maximum; we find
that χ∗

4 = χ4(t
∗) exhibits a divergence at Tc, as presented in figure 2. Both quantities behave

as powers of T − Tc: t∗ ∼ (T − Tc)
−α; χ∗

4 ∼ (T − Tc)
−γ . A best fit gives the values

γ = 0.52 ± 0.02, α = 1.1 ± 0.1.
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4. Conclusions

In this paper we have reviewed the analysis of the non-linear susceptibility in supercooled
liquids and glasses that comes from the mean-field theory of disordered systems, and liquid
models in the HNC approximation.

The theory predicts that while the long-time, equilibrium susceptibility remains finite and
is regular at all temperatures, the finite-time susceptibility displays a maximum as a function of
time which becomes higher and higher and displaced to larger and larger times for temperatures
close to Tc. This behaviour is a consequence of the critical character of the mode-coupling-like
dynamical transition predicted by the ideal theory described in this paper. For real systems
one can expect a similar behaviour, but with a rounding off of the divergence.
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